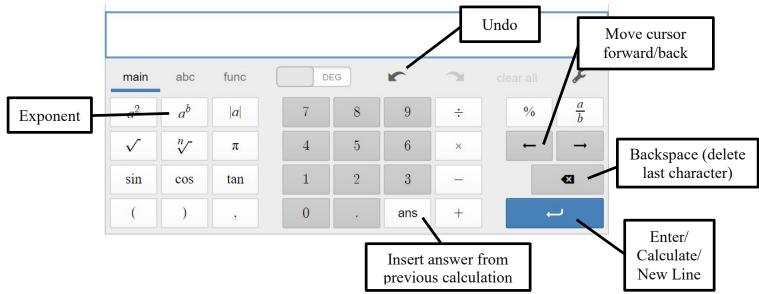


If you are a student that <u>HAS</u> access to technology, this is not the packet for you. This packet is for students who pick up and drop off their work at the front office every week. If you have access to technology, please go back to your teacher's website and complete the correct assignment.

Name: ___

__ Period: ______ Teacher: ______


Distance Learning Week 6 Paper Packet 5/11/2020 – 5/17/2020

Assignment 6.1: Online Calculator Tutorial

In this assignment you will learn to use the online Desmos calculator, particularly when calculating numbers in scientific notation. You will need to be able to calculate with Avogadro's number for this week's assignment! **If you have your own calculator that is fine too**—just make sure you are getting the **right answers** by doing the practice problems on page 2. Every calculator is a bit different but if you are entering the computations correctly, you should get the same answer as me.

The Basics:

- 1. Go to <u>desmos.com/scientific</u>
- 2. Do a few test calculations to get a feel for the calculator. Here is an overview of some of the specific buttons:

- 3. Try the following calculations. The answers are given—make sure you get the correct answer!
 - a. 468 x 25 = Answer: 11700
 - b. $0.025 \div 13 \times 51 =$ Answer: 3.77 x 10⁻⁵
 - c. $3^4 \div 0.53 =$ Answer: 152.8

For c, after entering the exponent, press the \rightarrow key to get out of the exponent!

Calculating Using Avogadro's Number: 6.022 x 10²³

1. Click "clear all" to reset the screen.

- 2. <u>Rule of thumb: Always put numbers in scientific notation in PARANTHESIS! ()</u>
- 3. Try it: To calculate the dimensional analysis problem to the right, we need to multiply the given (2.5×10^{23}) by 1, then divide by (6.022×10^{23})

$2.5 \ge 10^{23}$	1	=
	6.022 x 10 ²³	

Type in: $(2.5 \times 10^{23}) \times 1 \div (6.022 \times 10^{23})$

It should look like this:

 $(2.5 \cdot 10^{23}) \cdot \frac{1}{(6.022 \cdot 10^{23})}$

Then check your answer!

Answer = 0.4151

If you are having trouble, remember to click the \rightarrow button to move out of exponents or out of the bottom of a fraction.

4. Try the following **practice problems** to make sure you've got the hang of calculating with Avogadro's number! Check your answer after each calculation.

a.	4 x (6.022 x 10 ²³) =			Answer: 2.4088 x 10 ²⁴	
b.	(6.022 x 10 ²³) ÷ 45 =			Answer: 1.338 x 1022	
c.	(7.9 x 10 ²³) ÷ (6.022 x	(10 ²³) =		Answer: 1.312	
d.	3.8 x 10 ²³	1	=	Answer: 0.6310	
		6.022 x 10 ²³			
e.	0.678	6.022 x 10 ²³	=	Answer: 4.083 x	10 ²³
		1			
f.	$9.52 \ge 10^{23}$	1	45.3	=	
		6.022 x 10 ²³	1		

Answer: 71.61

Assignment 6.2 – Dimensional Analysis Review & Practice

We covered dimensional analysis at the beginning of the year (Learning Target 1.1), but we wanted to give you guys a chance to dust off the old notes and do a little more practice before we apply what we learned previously to this new concept of the mole. (Now would be the time to go get those notes out of your notebook if you still have them O)

Dimensional Analysis is the process of converting an amount in one unit to different unit using "conversion factors." In a conversion factor, the numerator is equal to the denominator.

For example:12 in.or1 ftor60 minor1 hour1 foot12 in.1 hr60 minSo if I wanted to convert 34.5 inches into feet, I would use dimensional analysis. You always start with
your given, and then you pick a conversion factor that has the units you want to get rid of on the bottom
(to cancel out) and the units you want to convert to on top. Sometimes it takes a one-step conversion,
sometimes it takes more!

34.5 inches x $\frac{1 \text{ foot}}{12 \text{ in}}$ = 2.88 feet

Another example: How many seconds do you spend in chemistry class in an average week (3.5 hours)? (*Do you see the units cancelling out?*)

3.5 hours	Х	<u>60 min</u>	Х	<u>60 seconds</u>	=	12,600 sec (13,000 sec for sig figs!)
		1 hr		1 minute		

Use the following conversion factor chart to complete the practice problems 1 – 8.

Mass Conversion	Factors	Volume Conversion	on Factors	Length Conversion Factors			
1000 grams (g)	1 kilogram (kg)	1000 mL	1 L	12 in	1 foot		
1 g	1000 mg	1 L	0.264 gal	1 in	2.54 cm		
1 kg	2.2 lb	1 L	4.227 cups	1.609 km	1 mile		
1 lb	16 oz	1 mL	1000 μL	1000 m	1 km		
		1 L	1,000,000 μL	100 cm	1 m		

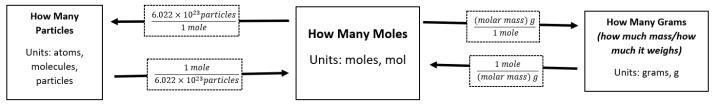
1. How many centimeters are in 26.5 inches?

26.5 inches x $\underline{cm} = 1$ inch

2. Convert 2.5 kg to grams.

 $2.5 \text{ kg} \qquad \text{x} \qquad \frac{1000 \text{ g}}{\text{Kg}} =$

- 3. How many kilometers did you run if you ran a 13.1 mile half-marathon?
- 4. It takes 16.1 gallons to fill up your gas tank, how many liters is that?
- 5. A 7-lb baby is how many grams?


7 lb x 1 kg x \underline{g} =. lb kg

- 6. How many centimeters are in 5 feet? (Hint: this is a two-step problem like #5).
- 7. $8.5 \times 10^9 \,\mu\text{L}$ is the same as _____ L.
- 8. A gallon of milk has _____ cups in it. (*Hint: this is a two-step problem like #5*).

Assignment 6.3: Practicing Mole Conversions

Instructions: Copy mole island (shown below) into your notebook. Then complete the practice problems below. When you are done, take a picture or scan your work and upload it to assignment 6.3 in Turnitin.com.

Mole Island: How to convert between grams, moles, and particles of an element or compound

<u>Practice Problems:</u> For each of the following problems, use mole island to complete the calculation. SHOW ALL WORK. For the first few problems, we started the problem for you.

Moles and Mass Conversions

1. How many grams would 3.25 moles of CH₄ weigh? (Molar Mass CH₄ = 16.04 g/mol)

3.25 moles CH ₄	grams	= grams
(remember: nothing goes here!)	moles	(remember: nothing goes here!)

2. How many moles are in 47.6 grams of CO₂? (Molar Mass CO₂ = _____)(calculate molar mass first!)

47.6 grams CO ₂	=
(remember: nothing goes here!)	(remember: nothing goes here!)

3. How much would 0.55 moles of NaBr weigh in grams? (Molar Mass NaBr = ____)

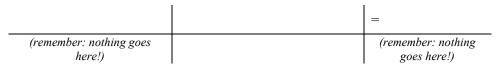
(remember: nothing goes here!)

(remember: nothing goes here!)

=

- 4. If I have 245.5 grams of KNO₃, how many moles do I have? (Molar Mass KNO₃ = _____)
- 5. How many grams would 5.3 moles of Ne weigh? (Molar Mass Ne = _____)
- 6. How many moles of CF_4 are in 100.5 grams? (Molar Mass CF_4 = _____)

Moles and Particles Conversions


7. If I have 2.5 moles of oxygen, how many oxygen atoms do I have?

2.5 moles Oxygen	atoms	= atoms
(remember: nothing goes here!)	moles	(remember: nothing goes here!)

8. If I have 1.82 x 10²³ molecules of PCl₃, how many moles do I have?

1.82 x 10 ²³ molecules PCl ₃	=
(remember: nothing goes here!)	(remember: nothing goes here!)

9. How many particles are in 0.78 moles of a substance?

- 10. How many moles are in 4.7×10^{23} atoms of Nitrogen?
- 11. If I have 6.5 moles of gold, how many gold particles do I have?
- 12. If I have 9.1 x 10²³ molecules of SO₂, how many moles do I have?

Challenge: These problems are optional unless you plan on taking AP Chem next year. <u>If you are planning on taking AP chem</u>, you should definitely do these! Even if you aren't, we encourage you to give them a shot! These are *two step conversions*—so you will take two steps to convert the given to the answer!

13. If I have 35.12 grams of magnesium, how many magnesium atoms do I have? (Molar Mass Mg =

)		
35.12 grams of Mg		=
(remember: nothing goes here!)		(remember: nothing goes here!)

14. If I have 5.04×10^{23} molecules of CoF₂, how much will it weigh in grams? (Molar Mas CoF₂ =

_____)

When you are done, take a pictures or scan and upload this to assignment 6.3 on Turnitin.com

2 8A	He 4.00260	0	Ne	20.1797	8	Ar 39.948	9	Kr	.80	4	Xe	131.29	9	Rn	22)	18	0g 0	94)	1	'n	.967	103	ŗ	(262)
	H 4.0						┢	¥					8		(2	-	$\overline{}$	5	⊢		_	1	Ι	5
	17 7A	6	Ĩ	18.998403	17	CI 35.453	35	Br	79.904	53	Ι	126.9045	85	At	(210)	117	Ls	(294)	70	Yb	173.04	102	No N	(259)
sdno.g	$^{16}{6A}$	×	0	15.9994	16	32.066	34	Se	78.96	52	Te	127.60	84	P_0	(209)	116	Lv	(298)	69	Tm	168.9342	101	Md	(258)
-Main groups	15 5A	7	Ζ	14.0067	15	F 30.97376	33	\mathbf{As}	74.9216	51	Sb	121.757	83	Bi	208.9804	115	Mc	(288)	68	Er	167.26	100	Fm	(257)
	$^{14}_{4A}$	9	U	12.011	14	DI 28.0855	32	Ge	72.61	50	Sn	118.710	82	Pb	207.2	114	Ŧ	(289)	67	H_0	164.9304	66	Es	(252)
	13 3A	s	В	10.81	13	AI 26.98154	31	Ga	69.72	49	In	114.82	81	IT	204.383	113	ЧN	(284)	99	Dy	162.50	98	Cf	(251)
``	·		Í	7	5	2 B	30	Zn	65.38	48	Cd	112.41	80	Hg	200.59	112	Cn	(285)	65	Πb	158.9254	97	Bk	(247)
					1	1B	29	Cu	63.546	47	Ag	107.8682	6L	Au	196.9665	111	m Rg	(280)	I 1	Gd		96	Cm	(247)
					10		28	Ż	58.69	46	Pd	106.42	78	Pt	195.08	110	Ds	(281)	63	Eu	151.96	95	Am	(243)
					o	-8B	27	Co	58.9332	45	Rh	102.9055	77	Ir	192.22	109	Mt	(276)	62	Sm	150.36	94	Pu	(244)
			n metals		ø	。 L	26	Fe	55.847	44	Ru	101.07	76	Ő	190.2	108	Hs	(270)	61	Pm	(145)	93	Np	237.048
			Transition metals	TO INTO IN I	Г	7B	25	Mn	54.9380	43	Lc	(98)	75	Re	186.207	107	Bh	(272)	09	Nd	144.24	92		238.0289
				-	9	e B	24	Cr				95.94	74	8	183.85	106	s S	(271)	59	Pr	140.9077	91		231.0359
					v	5B	23	>	50.9415	41	qN	92.9064	73	Ta	180.9479	105	Db	(268)	58	Ce	140.12	90		232.0381
					~	4 B	22	Ï	47.88	40	Zr	91.224	72	Ηf	178.49	104	Rf	(267)						
					"	3B	21	Sc	44.9559	39	Υ	88.9059	57	*La	138.9055	68	TAC	227.0278		eries			es	
in Post	$^{2}_{2A}$	4	Be	9.01218	12	Mg 24.305	20	Ca	40.078	38	Sr.	87.62	56	Ba	137.33	88	Ra	226.0254		*Lanthanide series			[†] Actinide series	
Main groups	H 1.00794	3	Li	6.941	11	22.98977	19	K	39.0983	37	Rb	85.4678	55	Cs	132.9054	87	Fr	(223)		*Lant			[†] Actii	

Periodic Table of the Elements

Assignment 6.2—Dimensional Analysis Review KEY

* Remember: Everything in this table is a definition & Definitions have an infinite number of sighigs 1. How many centimeters are in 26.5 inches? 26.5 inches x $\frac{2.54}{1.inch}$ = (e7, 3) cm Don't forget sigfigs! (1.3 cm) 3 sigfigs t 2.5 kg to grams. 2.5 kg x $\frac{1000 \text{ g}}{1 \text{ kg}} = 2500 \text{ g}$ 2.5 kg 2 SigAg S 2. Convert 2.5 kg to grams. 3. How many kilometers did you run if you ran a 13.1 mile half-marathon? Imile = 1.609 Km $13.1 \text{ miles}_{x} = \frac{1.609 \text{ Km}}{1.609 \text{ Km}} = 21.0779 \text{ Km} \frac{21.1 \text{ Km}}{3.519 \text{ fras}}$ 4. It takes 16.1 gallons to fill up your gas tank, how many liters is that? 1 L = 0.264 gal $16.19al \times \frac{1L}{D_{0.264}gal} = 60.984848L$ [61.0 L] 3 sigfig 5 5. A 7-lb baby is how many grams? 7 lb x $\frac{1 \text{ kg}}{2.2 \text{ lb}}$ x $\frac{1000 \text{ g}}{1 \text{ kg}}$ = 3191.8181829* 2.2 lb 1 kg 30009 1 sig fig 6. How many centimeters are in 5 feet? (Hint: this is a two-step problem like #5). Ift= 12 inches 1in = 2.54 cm $5ft \times \frac{12 \ln}{1ft} \times \frac{2.54 \text{ cm}}{1 \text{ inch}} = \frac{152.4 \text{ cm}}{200 \text{ cm}} \text{ 1 sig fig}$ 7. 8.5 x $10^9 \mu L$ is the same as _____ 1 L = 1000000 ML $8.5 \times 10^9 ML \times \frac{1L}{1000000 ML} = \frac{8500 L}{2 sigfigs}$ 8. A gallon of milk has _____ cups in it. (Hint: this is a two-step problem like #5). D autoal 1

$$1L = 0.264gai$$

$$1L = 4.277 cups$$

$$1 gai_{X} \frac{1L}{0.264gai} \frac{4.277 eups}{1L} = 16.20075...cups$$

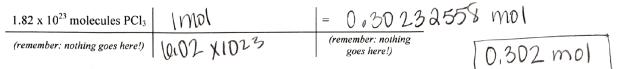
$$\boxed{20 cups}$$

$$\boxed{20 cups}$$

$$\boxed{1 sig fig}$$

Assignment 6.3—Practicing Mole Conversions KEY

Moles and Mass Conversions


1. How many grams would 3.25 moles of CH₄ weigh? (Molar Mass CH₄ = 16.04 g/mol)

	3.25 moles CH ₄	16.04	grams	52.1 grams
	(remember: nothing goes here!)		moles	(remember: nothing goes here!)
2.	How many moles are in 47.6 grams 47.6 grams CO ₂ (remember: nothing goes here!)		$s co_2 = \frac{44.01}{002}$)(calculate molar mass first!) 0 8 M0 CO2 (remember: nothing goes here!)
3.	56.5895 g → 57 g			
4.	2.428288 mol → 2.428 r	mol		
5.	106.954 g → 110 g			

- 6. 1.142045 mol → 1.142 mol
- Moles and Particles Conversions
 - 7. If I have 2.5 moles of oxygen, how many oxygen atoms do I have?

2.5 moles Oxygen
$$(0.02 \times 10^{23} \text{ atoms} = 1.5 \times 10^{24} \text{ OHPM S}$$

(remember: nothing goes
here!) moles (remember: nothing
goes here!)

8. If I have 1.82 x 10²³ molecules of PCl₃, how many moles do I have?

- 9. 4.7 x 10²³ particles
- 10. 0.78 mol N
- 11. 3.9×10^{24} particles Gold
- 12. 3.5 mol SO₂

Challenge: These problems are optional unless you plan on taking AP Chem next year. If you are planning on taking AP chem, you should definitely do these! Even if you aren't, we encourage you to give them a shot! These are *two step conversions*—so you will take two steps to convert the given to the answer!

13.		nagnesium, how many magn	esium <u>atoms</u> do I have? (Mo	lar Mass Mg = 23
	24.305 g/mD			8.69872X1023
	35.12 grams of Mg	Imol Mg	4.02×1023	= 8.699×1023 atoms
- -	(remember: nothing goes here!)	24.305gmg	I mol Mg	(remember: nothing goes here!)

14.	87 g CoF ₂
	e . ee . 2